
Appendix A: The MSTCAR Hierarchical Model
RSTr-models.Rmd
Overview
In this vignette, we outline the hierarchical models used in the
RSTr
package, along with the full-conditional distributions
used for each update.
The UCAR Hierarchical Model
The UCAR model used by RSTr
is based on the model
developed by Besag, York,
and Mollié (1991) with modifications using inverse transform
sampling for restricted informativeness based on Quick, et
al. (2021):
For models using method = "binom"
,
\[ \begin{split} Y_{i} &\sim \text{Binomial}(n_{i}, \theta_{i}) \\ \theta_{i} &\sim \text{LogitNormal}(\beta_{j} + Z_{i}, \tau^2), \\ i &=\{1,...,N_s\}, j =\{1,...,N_{is}\} \end{split} \]
For models using method = "pois"
,
\[ \begin{split} Y_{i} &\sim \text{Poisson}(n_{i} \theta_{i}) \\ \theta_{i} &\sim \text{LogNormal}(\beta_{j} + Z_{i}, \tau^2), \\ i &=\{1,...,N_{s}\},\ j =\{1,...,N_{is}\} \end{split} \]
For both models,
\[ \begin{split} \beta_{j} &\sim \text{Normal}(0,\sigma_{\beta}^2),\ \sigma_{\beta}^2 \to \infty \\ Z &\sim \text{CAR}(\sigma^2) \\ \sigma^2 &\sim \text{InvGamma}(a_\sigma,b_\sigma) \\ \tau^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} \]
The MCAR Hierarchical Model
The MCAR model used by RSTr
is an extension of the model
developed by Besag, York,
and Mollié (1991):
For models using method = "binom"
,
\[ \begin{split} Y_{ik} &\sim \text{Binomial}(n_{ik}, \theta_{ik}) \\ \theta_{ik} &\sim \text{LogitNormal}(\beta_{jk} + Z_{ik}, \tau_k^2), \\ i &=\{1,...,N_s\}, k =\{1,...,N_{g}\}, j=\{1,...,N_{is}\} \end{split} \]
For models using method = "pois"
,
\[ \begin{split} Y_{ik} &\sim \text{Poisson}(n_{ik}, \theta_{ik}) \\ \theta_{ik} &\sim \text{LogNormal}(\beta_{jk} + Z_{ik}, \tau_k^2), \\ i &=\{1,...,N_s\}, k =\{1,...,N_{g}\}, j=\{1,...,N_{is}\} \end{split} \]
For both models,
\[ \begin{split} \beta_{jk} &\sim \text{Normal}(0,\sigma_{\beta}^2),\ \sigma_{\beta}^2 \to \infty \\ Z &\sim \text{CAR}(G) \\ G &\sim \text{InvWishart}(\nu,G_0) \\ \tau^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} \]
The MSTCAR Hierarchical Model
The MSTCAR model used by RSTr
is based on the model
developed by Quick, et
al. (2017):
For models using method = "binom"
,
\[ \begin{split} Y_{ikt} &\sim \text{Binomial}(n_{ikt}, \theta_{ikt}) \\ \theta_{ikt} &\sim \text{LogitNormal}(\beta_{jkt} + Z_{ikt}, \tau_k^2), \\ i &=\{1,...,N_s\},\ k =\{1,...,N_g\},\ t=\{1,...,N_t\},\ j=\{1,...,N_{is}\} \end{split} \]
For models using method = "pois"
,
\[ \begin{split} Y_{ikt} &\sim \text{Poisson}(n_{ikt} \theta_{ikt}) \\ \theta_{ikt} &\sim \text{LogNormal}(\beta_{jkt} + Z_{ikt}, \tau_k^2), \\ t &=\{1,...,N_t\},\ i =\{1,...,N_s\},\ k=\{1,...,N_g\},\ j=\{1,...,N_{is}\} \end{split} \]
For both models,
\[ \begin{split} \beta_{jkt} &\sim \text{Normal}(0,\sigma_{\beta}^2),\ \sigma_{\beta}^2 \to \infty \\ Z &\sim \text{MSTCAR}(\mathcal{G}, \mathcal{R}), \ \mathcal{G}=\{G_1,...,G_{N_t}\}, \ \mathcal{R}=\{R_1,...,R_{N_g}\} \\ G_t &\sim \text{InvWishart}(A_G, \nu) \\ A_G &\sim \text{Wishart}(A_{G_0}, \nu_0) \\ R_k &= \text{AR}(1,\rho_k) \\ \rho_k &\sim \text{Beta}(a_{\rho}, b_{\rho}) \\ \tau_k^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} \]
For more information regarding the model and its full-conditional distributions, reference Quick, et al. (2017).