3. Producing Stabilized Rates

The final step of a RSTbx workflow is producing stabilized rates!

Model

The Univariate Conditional Autoregressive (UCAR) model used by RSTbx is based on the model developed by Besag, York, and Mollié (1991) with modifications using inverse transform sampling for restricted informativeness based on Quick, Song, and Tabb (2021):

\[ \begin{split} Y_{i} &\sim \text{Binomial}(n_{i}, \theta_{i}) \\ \theta_{i} &\sim \text{LogitNormal}(\beta_{j} + Z_{i}, \tau^2), \\ i &=\{1,...,N_s\}, j =\{1,...,N_{is}\} \end{split} \]

\[ \begin{split} \beta_{j} &\sim \text{Normal}(0,\sigma_{\beta}^2),\ \sigma_{\beta}^2 \to \infty \\ Z &\sim \text{CAR}(\sigma^2) \\ \sigma^2 &\sim \text{InvGamma}(a_\sigma,b_\sigma) \\ \tau^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} \]

Additional models are available within the RSTr package.

Requirements

Aggregate event and population table

Aggregate event and population tables should be formated to have one record (aka row) for each region. It would look something like:

GEOID EventCount PopulationCount
01001 0 3430
01001 1 7749
01001 0 7339
72153 5 4527
72153 7 3223
72153 9 571

If you would like to produce age-adjusted rates, aggregate event tables should have one record (aka row) for reach region-age group combination. Like this:

GEOID AgeGroup EventCount PopulationCount
01001 0-4 0 3430
01001 5-14 1 7749
01001 15-24 0 7339
72153 65-74 5 4527
72153 75-84 7 3223
72153 85up 9 571

Boundary File

See 1. Acquiring Population Data - Boundary File

Usage

Producing crude rates

If you haven’t already, set up the Rate Stabilizing Toolbox.

  1. Open up the Catalog Pane.

  2. Right click on Databases, select Add Database, and navigate to where you have downloaded and extracted the RSTbx and find data.gdb.

  3. Within the data.gdb, right click on mi_carto and mi_joined_event_pop, and Add to Current Map.

  4. Open the Rate Stabilizing Tool

  5. Set the following parameters and Run:

    Input Table: data.gdb/mi_joined_event_pop
    Input Table Fields:

    • Region ID: GEOID
    • Event Count: EventCount
    • Population Count: PopulationCount

    Input Feature: data.gdb/mi_carto
    Input Feature Fields:

    • Region ID: GEOID

    Additional Options:

    • Credible Level: 0.95
    • Rate Per: 100,000
    • Number of Years: 1

    Output Table: crude_rates
    Age Group Field: Leave blank
    Standard Population Year: Leave blank
    Standardized Age Groups:

    • Lower age group: Leave blank
    • Upper age group: Leave blank

Producing age-adjusted rates

  1. Within the data.gdb, right click on mi_joined_event_pop_strat, and Add to Current Map.

  2. Returning back to the Rate Stabilizing Tool, set the following parameters and Run:

    Input Table: data.gdb/mi_joined_event_pop_strat
    Input Table Fields:

    • Region ID: GEOID
    • Event Count: EventCount
    • Population Count: PopulationCount

    Input Feature: data.gdb/mi_carto
    Input Feature Fields:

    • Region ID: GEOID

    Additional Options:

    • Credible Level: 0.95
    • Rate Per: 100,000
    • Number of Years: 1

    Output Table: age_adj_rate
    Age Group Field: AgeGroup
    Standard Population Year: 2010
    Standardized Age Groups:

    • Lower age group: 35, 64, 34
    • Upper age group: 64, up, up

Interpreting estimates

When producing crude rates four columns will be output:

median - The estimated rate. CI{credible level}lower - The lower bound of the estimate at the selected credible level.
CI{credible level}upper - The upper bound of the estimate at the selected credible level.
relLvl - The maximum credible level at which a reliable estimate can be produced.

We typically recommend only utilizing estimates with a reliability level above 0.95.

When producing age-adjusted rate, these same columns will be present for each constituent age group within your data AND the standardized age groups you selected.

References

Besag, Julian, Jeremy York, and Annie Mollié. 1991. “Bayesian Image Restoration, with Two Applications in Spatial Statistics.” Annals of the Institute of Statistical Mathematics 43 (1): 1–20. https://doi.org/10.1007/BF00116466.
Quick, Harrison, Guangzi Song, and Loni Philip Tabb. 2021. “Evaluating the Informativeness of the Besag-York-Mollié CAR Model.” Spatial and Spatio-Temporal Epidemiology 37 (June): 100420. https://doi.org/10.1016/j.sste.2021.100420.